Abstract

Widespread river regulation is known to modify river-aquifer interactions, influencing entire watersheds, but knowledge of the hyporheic flowpath along regulated rivers is limited. This study measured the hydraulic conductivity of the river bed and the aquifer, water levels and seepage fluxes in the heavily regulated Lule River in Northern Sweden, with the aim of characterising water exchange across the river-aquifer interface. While pristine rivers in the area are gaining, the Lule River was recharging the aquifer during 10% of the time. Daily river level fluctuations (typically ±0.25 m) directed ~3% of the total orthogonal flux across the river bed towards the aquifer, while during ~2% of the time the orthogonal fluxes were negligible (≤10–4 m d–1). A clogging layer on the river bed, most likely formed due to the modified river discharge, restricted river-aquifer exchange. The hyporheic zone had higher electrical conductivity than the river and the aquifer and electrical conductivity occasionally decreased following rising river water levels, with 3–5 hours' delay. Overall, hydropower regulation has severely altered the hydrological regime of the hyporheic zone in the Lule River.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.