Abstract

The novel gastric hormone ghrelin has recently been identified as an important modulator of energy homeostasis. Leptin-responsive hypothalamic neuropeptide Y/Agouti-related protein neurons are believed to mediate afferent ghrelin signals. Little is known, however, about ghrelin-induced efferent signals. We therefore investigated if hypothalamic-pituitary axes have a role in transferring ghrelin-induced changes of energy balance to the periphery. We subcutaneously injected hypophysectomized, as well as adrenalectomized, thyroidectomized, and sham-operated control rats with GH secretagogues [ghrelin, growth hormone (GH)-releasing peptide] for 1 week. Body weight, food intake, and body composition (chemical carcass analysis) were analyzed and compared with vehicle-treated controls. In addition, we quantified circulating levels of endogenous ghrelin in hypophysectomized and GH-treated normal rats. GH-secretagogue treatment of sham-operated control rats dose-proportionally increased food intake, body weight, and fat mass compared with vehicle-injected controls (p < 0.01). These effects, however, were not observed in ghrelin-treated hypophysectomized, thyroidectomized, or adrenalectomized rats, indicating an essential role for the pituitary axis in ghrelin-induced adiposity. Circulating levels of endogenous ghrelin were reduced by administration of GH in normal rats and were about 3-fold higher in hypophysectomized rats (n = 20, p = 0.001), suggesting a regulatory feedback loop involving the stomach and the pituitary to regulate gastric ghrelin secretion. According to these results, the endocrine pituitary is mediating ghrelin-induced changes toward a positive energy balance and is involved in the regulation of ghrelin secretion through a gastro-hypophyseal feedback loop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call