Abstract

We recently reported that loss of calcium/calmodulin-dependent protein kinase kinase-2 (CAMKK2), a serine/threonine kinase activated by intracellular calcium, in mice leads to tissue-specific aberrant turnover of transferrin (TF), a receptor-mediated iron-transporter that supplies iron to tissues. Iron dyshomeostasis is associated with the pathogenesis of several diseases, making TF transport relevant to health. In this study, we used hemizygous CAMKK2 hypomorphic human endothelial cell (EA.hy926) clones to demonstrate that cells with reduced CAMKK2 exhibit increased TF uptake and transcytosis, and decreased intracellular trafficking to subcellular organelles compared to wild-type. The abnormal TF trafficking in CAMKK2 hypomorphic cells correlated with a reduction in intracellular iron content and defective glucose metabolism including glycolysis and mitochondrial respiration. CAMKK2 deficiency also caused reduction in GAPDH and VDAC1 protein level which correlated to defective bioenergetics function. These findings have identified a novel mechanistic link between abnormal calcium signaling, iron dyshomeostasis and metabolic dysfunction involving CAMKK2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call