Abstract

We investigated the effect of stem cell marker dopamine receptor D2 (DRD2) on the proliferation of hormone-receptor-negative breast cancer cells. High-throughput DNA methylation sequencing on an 850 K chip was used to pre-screen breast cancer tissues with significant methylation differences. The expression of DRD2 in breast cancer and normal breast tissues, and clinical risk factors, were detected by pyrophosphoric acid validation and immunohistochemistry. In vitro and in vivo experiments verified the possible molecular signaling pathways. DRD2 promoter region was hypomethylated in hormone-receptor-negative breast cancer or with high-risk factors compared to the normal tissues. The proliferation of breast cancer cells was enhanced after DRD2 was upregulated and decreased after DRD2 was downregulated. In vivo experiments found that tumor growth and the expression of antigen KI-67 (Ki67) and the cluster of differentiation 31 (CD31) were improved by the overexpression of DRD2 and inhibited by the down expression of DRD2. In vivo and in vitro experiments demonstrated the phosphorylation of filamin A and extracellular signal-regulated kinase (FLNA-ERK) was influenced by the expression of DRD2, suggesting DRD2 plays a role in the FLNA-ERK signaling pathway. Methylation inhibitors (5-aza-2-deoxycytidine, 5-azadc) partially reversed the inhibitory effect of DRD2 down expression on cell proliferation, migration, and tumor growth in animal models, indicating that inhibition of DRD2 methylation promotes cancer development. This study demonstrated the DRD2 promoter region is hypomethylated in hormone-receptor-negative breast cancer or with high-risk factors. The methylation status of the DRD2 promoter and FLNA-ERK signaling pathway and the DRD2 expression in breast cancer treatment need to be considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.