Abstract

Background Water channel aquaporin 1 (AQP1) protein expression is enhanced in the tunica vaginalis of patients with adult-onset non-communicating hydrocele testis and may contribute to the development of non-communicating hydrocele testis. We performed genetic and epigenetic analyses of the AQP1 gene in the tunica vaginalis of patients with adult-onset non-communicating hydrocele testis to elucidate the cause of enhanced AQP1 protein expression. Methodology The genotype was determined for Tag single-nucleotide polymorphisms (SNPs) representing the AQP1 gene and SNPs in the 5'-upstream region of the AQP1 gene. Then, by performing association analysis, the applicability of various genetic models was investigated for each SNP. Moreover, the methylation rate of CpG sites was examined for the CpG island related to the AQP1 gene. Results There was no significant association between each SNP and hydrocele testis for any of the genetic models. The average methylation rate of the 17 CpG sites evaluated was not significantly different between controls and hydrocele testis, but the methylation rate was lower in hydrocele testis than in controls at one CpG site. Conclusions There was a significant decrease in the methylation rate at one of the CpG sites in the CpG island associated with the AQP1 gene in the tunica vaginalis of patients with non-communicating hydrocele testis. This may increase AQP1 protein expression and contribute to the formation of hydrocele testis. SNPs related to the AQP1 gene were not associated with hydrocele testis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call