Abstract

BackgroundMethylation changes are frequent in cancers, but understanding how hyper- and hypomethylated region changes coordinate, associate with genomic features, and affect gene expression is needed to better understand their biological significance. The functional significance of hypermethylation is well studied, but that of hypomethylation remains limited. Here, with paired expression and methylation samples gathered from a patient/control cohort, we attempt to better characterize the gene expression and methylation changes that take place in cancer from B cell chronic lymphocyte leukemia (B-CLL) samples.ResultsAcross the dataset, we found that consistent differentially hypomethylated regions (C-DMRs) across samples were relatively few compared to the many poorly consistent hypo- and highly conserved hyper-DMRs. However, genes in the hypo-C-DMRs tended to be associated with functions antagonistic to those in the hyper-C-DMRs, like differentiation, cell-cycle regulation and proliferation, suggesting coordinated regulation of methylation changes. Hypo-C-DMRs in B-CLL were found enriched in key signaling pathways like B cell receptor and p53 pathways and genes/motifs essential for B lymphopoiesis. Hypo-C-DMRs tended to be proximal to genes with elevated expression in contrast to the transcription silencing-mechanism imposed by hypermethylation. Hypo-C-DMRs tended to be enriched in the regions of activating H4K4me1/2/3, H3K79me2, and H3K27ac histone modifications. In comparison, the polycomb repressive complex 2 (PRC2) signature, marked by EZH2, SUZ12, CTCF binding-sites, repressive H3K27me3 marks, and “repressed/poised promoter” states were associated with hyper-C-DMRs. Most hypo-C-DMRs were found in introns (36 %), 3′ untranslated regions (29 %), and intergenic regions (24 %). Many of these genic regions also overlapped with enhancers. The methylation of CpGs from 3′UTR exons was found to have weak but positive correlation with gene expression. In contrast, methylation in the 5′UTR was negatively correlated with expression. To better characterize the overlap between methylation and expression changes, we identified correlation modules that associate with “apoptosis” and “leukocyte activation”.ConclusionsDespite clinical heterogeneity in disease presentation, a number of methylation changes, both hypo and hyper, appear to be common in B-CLL. Hypomethylation appears to play an active, targeted, and complementary role in cancer progression, and it interplays with hypermethylation in a coordinated fashion in the cancer process.Electronic supplementary materialThe online version of this article (doi:10.1186/s40246-016-0071-5) contains supplementary material, which is available to authorized users.

Highlights

  • Methylation changes are frequent in cancers, but understanding how hyper- and hypomethylated region changes coordinate, associate with genomic features, and affect gene expression is needed to better understand their biological significance

  • The biological significance of DNA hypomethylation remains understudied owning to its unclear role in carcinogenesis, in contrast to hypermethylation, which is commonly viewed as a transcription silencing mechanism [11, 12]

  • gene ontology (GO) annotations relate to transcription regulation, chromatin modification, apoptosis, cell proliferation, leukocyte differentiation, and signal transduction were enriched for hypo-consistent differentially hypomethylated regions (C-differentially methylated regions (DMRs)), which defines their functional role in cancer development

Read more

Summary

Introduction

Methylation changes are frequent in cancers, but understanding how hyper- and hypomethylated region changes coordinate, associate with genomic features, and affect gene expression is needed to better understand their biological significance. Many cancer types have been reported to have global loss of methylation like glioblastoma [2], ovarian epithelial carcinoma [3], prostate metastatic tumors [4], B cell chronic lymphocytic leukemia [5, 6], hepatocellular carcinoma [7], cervical cancer [8], colon adenocarcinoma [9], and Wilms’ tumor [10]. The biological significance of DNA hypomethylation remains understudied owning to its unclear role in carcinogenesis, in contrast to hypermethylation, which is commonly viewed as a transcription silencing mechanism [11, 12]. It is critical to analyze hypomethylation data in depth to achieve a better understanding of its biological roles in carcinogenesis

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.