Abstract
This study reports the hypolipidemic effects of perillaldehyde-loaded self-nanoemulsifying delivery system (PAH-SNEDS) developed with D-optimal experimental design based on a three component system: 40% w/w drug-oil phase, X1 (a mixture of perillaldehyde-isopropyl myristate/medium chain triglyceride, 1:1, w/w); 48% surfactant, X2 (Kolliphor EL); and 12% co-surfactant, X3 (PEG 200). The design space was navigated using a linear model to produce spherical and homogenous droplets which were observed under TEM, with mean size, polydispersity index (PDI) and zeta potential of 32.8±0.1nm, 0.270±0.029 and −10.14±0.66mV, respectively. PAH-SNEDS demonstrated significant increase in dissolution in vitro compared to the free PAH, and further yielded an oral relative bioavailability of about 206.18% in vivo which suggested a promising formulation design for potential liquid bioactive compounds. Oral administration of PAH-SNEDS (240mg/kg per body weight) in high-fat induced hyperlipidemia in mice, also significantly decreased serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) while increasing high-density lipoprotein cholesterol (HDL-C) level. The improved bioavailability and functional application of PAH via SNEDDS suggested a suitable approach to promote hypolipidemic effect of the drug. Perillaldehyde, therefore, promises to be a useful bioactive compound to prevent high-fat diet induced hyperlipidemia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.