Abstract

BackgroundThe novel compound XH601 is a synthesized derivative of formononetin. The present study was to investigate the hypolipidemia effect and potential mechanism of XH601.MethodsMale Golden Syrian hamsters were induced by high-fat diet (HFD) for eight weeks and the hyperlipidemic model was established successfully. After XH601 treatment, serum and hepatic biochemistry parameters of hamsters were detected and the effect of XH601 on adipose tissue was also analyzed. Furthermore, 3 T3-L1 cell differentiation by Oil-Red-O staining was observed and the mRNA and protein expression of peroxisome proliferator-activated receptors (PPARs) were measured by qRT-PCR and Western-blot in mature adipocytes.ResultsThe in vivo results suggest that XH601 significantly decreased the adipose weight and levels of serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL-C), apolipoprotein B (Apo-B), apolipoprotein E (Apo-E), while increased serum high-density lipoprotein (HDL-C). The in vitro results implied that XH601 up-regulated the mRNA and protein expression of both PPARα and PPARβ/δ in a dose-dependent manner.ConclusionsThe study suggests that XH601 exhibited strong ability to improve the dyslipidemia in hamsters fed with high-fat diet. The potential mechanism of XH601 was associated with the up-regulation of PPARα and PPARβ/δ mRNA and protein expression.

Highlights

  • The novel compound XH601 is a synthesized derivative of formononetin

  • Data obtained from preclinical animal experiments as well as clinical and epidemiological studies suggest that isoflavones may prevent dyslipidaemia, obesity, atherosclerosis, type 2 diabetes, nonalcoholic fatty liver disease, etc. [11,12,13] Formononetin is an O-methylated isoflavone present in different bean types at various levels

  • After acclimation for one week, the hamsters were randomly divided into two groups: normal-fat diet (NFD) group (n = 10) and high-fat diet (HFD) group (n = 40)

Read more

Summary

Introduction

The novel compound XH601 is a synthesized derivative of formononetin. The present study was to investigate the hypolipidemia effect and potential mechanism of XH601. For over 20 years, statins have been utilized as one of the most widely prescribed medications for treatment of dyslipidemia [4]. Despite their highly beneficial effects in clinical practice, Over the past several decades, a pronounced increase of interest in the research of physiologic and pharmacologic effects of naturally bioactive compounds has taken place. Data obtained from preclinical animal experiments as well as clinical and epidemiological studies suggest that isoflavones may prevent dyslipidaemia, obesity, atherosclerosis, type 2 diabetes, nonalcoholic fatty liver disease, etc. [11,12,13] Formononetin is an O-methylated isoflavone present in different bean types at various levels.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call