Abstract
Purpose: The aqueous enzymatic extract from rice bran (AEERB) was rich in protein, γ-oryzanol and tocols. The aim of this study was to investigate the effects of AEERB on the regulation of lipid metabolism and the inhibition of oxidative damage. Methods: The antioxidant activity of AEERB in vitro was measured in terms of radical scavenging capacity, ferric reducing ability power (FRAP) and linoleic acid emulsion system-ferric thiocyanate method (FTC). Male Wistar rats were fed with a normal diet and a high-fat and high-cholesterol diet with or without AEERB. After treatment, biochemical assays of serum, liver and feces lipid levels, the antioxidant enzyme activity, malondialdehyde (MDA) and protein carbonyl were determined. Result: AEERB is completely soluble in water and rich in hydrophilic and lipophilic functional ingredients. AEERB scavenged DPPH• and ABTS•+ and exhibited antioxidant activity slightly lower than that of ascorbic acid in the linoleic acid system. The administration of AEERB reduced serum lipid levels and the atherogenic index compared with those of the hyperlipidemic diet group (HD). The administration of AEERB significantly lowered liver lipid levels, inhibited hepatic 3-hydroxyl-3-methylglutaryl CoA reductase activity, and efficiently promoted the fecal excretion of total lipids and total cholesterol (TC) (p < 0.05). Dietary AEERB enhanced antioxidant status in the serum, liver and brain by increasing the antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and decreasing the content of MDA and protein carbonyl. Conclusions: The results indicated that AEERB might act as a potent hypolipidemic and antioxidant functional food.
Highlights
Hyperlipidemia is a risk factor for the development of cardiovascular diseases (CVD), including atherosclerosis (AS), coronary heart disease (CHD), and hypertension
We developed an aqueous enzymatic extract from rice bran (AEERB) that is completely soluble in water and rich in functional compositions— hydrophilic ingredients, and lipophilic ingredients [16], which could contribute to the treatment of chronic diseases caused by dyslipidemia and oxidative stress
Compared with RB, the enzymatic treatment markedly increased the content of the chemical compositions and bioactive compounds in AEERB except for that of the crude fat, which indicated that the enzymatic process had a significantly positive effect on the active compositions
Summary
Hyperlipidemia is a risk factor for the development of cardiovascular diseases (CVD), including atherosclerosis (AS), coronary heart disease (CHD), and hypertension. Scientists have become increasingly interested in functional foods because of the serious side effects of cholesterol-lowering drugs. RB contains high valued protein, fat and bioactive phytochemicals with antioxidant and lipid-lowering properties including γ-oryzanol, tocols (tocopherols and tocotrienols) and flavonoid compounds. Natural antioxidant components and nutritional proteins are abundant in RB, its potential application as a natural and raw material for the preparation of functional foods or nutraceuticals is limited because of the high insolubility of its protein, the integrity of the nutraceutical components of the product, its tendency to rancidity, and storage difficulty associated with it [9]. Previous studies have focused primarily on RB oil (γ-oryzanol and tocols) and functional protein or peptide, which were researched respectively, and several studies have demonstrated the hypolipidemic efficacy of RB oil in rodents [2,10,11,12] rabbits, primates and humans [13]. There has not been a compositive evaluation of the antioxidant effect of RB enzymatic extract against the oxidative damage by antioxidant enzyme activities and the protein carbonyl content in hyperlipidemic rats
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.