Abstract

BackgroundThere would be over 600 million people living with diabetes by 2040 as predicted by the World Health Organization. Diabetes is characterized by raised blood sugar and insulin resistance. Insulin regulates the influx of glucose into the cell by upregulating the glucose transporter type 4 (GLUT4) expression on the plasma membrane. Besides, PPAR-γ also controls the metabolism of glucose in adipose tissues. Curcuma mangga Val., denoted as C. mangga, is a native Indonesian medicinal plant that has many beneficial effects, including an antidiabetic potential.PurposeIn this research, we aimed to disclose the hypoglycemic activity of ethanol extract of C. mangga (EECM) in 3T3-L1 fibroblasts-derived adipocyte cells in regulating glucose uptake as confirmed by the GLUT4 and PPAR-γ gene expression.MethodsThe uptake of glucose was determined using radioactive glucose, while the gene expression of GLUT4, PPAR-γ, and β-actin was quantified using mRNA segregation and real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR).ResultsWe discovered that EECM interventions (200 and 50 μg/mL) increased glucose uptake in lipid-laden 3T3-L1 cells by 14.75 and 8.86 fold compared to the control non-insulin, respectively (p < 0.05). At the same doses, they also increased GLUT4 mRNA expression by 8.41 and 11.18 fold compared to the control non-insulin, respectively (p < 0.05). In contrast, EECM interventions (200 and 50 μg/mL) showed lower levels of PPAR-γ mRNA expression compared to the control metformin, indicating the anti-adipogenic potentials of EECM.ConclusionEECM showed hypoglycemic activity in lipid-laden 3T3-L1 cells by improving glucose ingestion into the cells, which was mediated by increased GLUT4 expression and downregulated PPAR-γ expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.