Abstract

The purpose of these studies was to quantify several mRNAs expressed specifically in pancreatic islet cells and known or postulated to be important for insulin release after acute well defined alterations in levels of plasma glucose. Glucose levels were maintained at 50, 120, or 180 mg/dl (2.8, 6.7, or 10 mM) for 3 h in conscious unrestrained rats. Hypoglycemia (for 3 h) caused significant decreases in pancreatic content of mRNAs for insulin 2 and GLUT-2 to 55 and 34% of control values, respectively. There were no significant changes in insulin 1, amylin, glucokinase, or glucagon mRNAs. Unprocessed insulin 1 and 2 mRNA precursors were decreased to 17 and 10% of levels in controls, consistent with effects of short-term hypoglycemia on new mRNA synthesis. Hyperglycemia (for 3 h) caused no increase in pancreatic content of any mRNA measured. To discriminate between effects of hypoglycemia and hyperinsulinemia in the hypoglycemic animals, rats were made hypoglycemic by infusion with etomoxir, a carnitine palmitoyltransferase I inhibitor that lowers glucose in the fasted (glycogen-depleted) state by inhibiting hepatic gluconeogenesis. A single dose of this agent caused a decrease in glucose from 120 mg/dl (6.7 mM) to 80 mg/dl (4.4 mM) and significantly decreased insulin mRNA and pre-mRNA. These results are consistent with the hypothesis that glucose modulates islet cell gene transcription directly. They indicate that the range of glucose concentrations that modulate gene transcription differs from the levels of glucose that alter both insulin biosynthetic and secretion rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call