Abstract

Glyburide is mainly metabolized by the cytochrome P450 2C9 (CYP2C9) enzyme and enters the liver via the transporter OATP1B3. The variants OATP1B3*4 (699 G>A; rs7311358) and CYP2C9*2 and *3 are known to have a significant influence on the hepatic uptake and metabolism of glyburide, with lower clearance than in the wild type. In an ancillary study of the INDAO trial, we selected 117 pregnant women with gestational diabetes treated by glyburide and assessed the role of the combined CYP2C9 and OATP1B3 genetic polymorphisms in hypoglycemia and glycemic control. Three groups were constituted: (1) the wild-type genotype group (wild-type allele genotype for both CYP2C9*1 and OATP1B3*1 (699G)), (2) the intermediate group (carriers of CYP2C9*2 allele or OATP1B3*4 (699G>A) heterozygous), and (3) the variant group (carriers of CYP2C9*3 allele and/or OATP1B3*4 (699G>A) homozygous variant). We found that the risk of hypoglycemia was significantly higher in the variant genotype at the second week of treatment: 20.0% (4/20) vs. 8.1% (3/37) in the intermediate group and 4.1% (2/49) in the wild-type genotype group (P=0.03). The last daily dose of glyburide during pregnancy was lower for patients in the variant genotype group: 4.7mg (SD 3.5) vs. 8.7mg (SD 5.7) in the wild-type group and 5.7mg (SD 3.7) in the intermediate group (P<0.01). In conclusion, the no-function variants CYP2C9*3 and OATP1B3*4 are associated with a higher risk of hypoglycemia and a lower dose of glyburide in women with gestational diabetes treated with glyburide, which is consistent with the pharmacokinetic roles of both CYP2C9 and OATP1B3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call