Abstract

Sulfonylureas (SUs) have been suggested to have an insulin-independent blood glucose-decreasing activity due to an extrapancreatic effect. However, a lack of adequate in vivo evidence makes this statement controversial. Here, we aimed to evaluate whether glimepiride has extrapancreatic blood glucose-lowering activity in vivo. Sulfonylurea receptor 1 deficient (SUR1-/- ) rats were created by means of transcription activator-like effector nucleases (TALEN)-mediated gene targeting technology. Type 2 diabetic models were established by feeding a high-fat diet and administering a low-dose of streptozotocin. These rats were then randomly divided into four groups: glimepiride, gliclazide, metformin and saline. All rats were treated for 2weeks. Glimepiride decreased blood glucose levels and increased insulin sensitivity without elevating insulin levels. Gliclazide showed similar effects as glimepiride. Both agents were weaker than metformin. Further mechanistic investigations revealed that glimepiride increased hepatic glycogen synthesis and decreased gluconeogenesis, which were accompanied by the activation of Akt in the liver. Moreover, glimepiride increased both total and membrane glucose transporter 4 (GLUT4) levels in muscle and fat, which might be attributed to insulin receptor-independent IRS1/Akt activation. Glimepiride possesses an extrapancreatic blood glucose-lowering effect in vivo, which might be attributed to its direct effect on insulin-sensitive tissues. Therefore, the combination of glimepiride with multiple insulin injections should not be excluded per se.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call