Abstract
The starting point of our analysis is an old idea of writing an eigenfunction expansion for a heat kernel considered in the case of a hypoelliptic heat kernel on a nilpotent Lie group G. One of the ingredients of this approach is the generalized Fourier transform. The formula one gets using this approach is explicit as long as we can find all unitary irreducible representations of G. In the current paper we consider an n-step nilpotent Lie group G n as an illustration of this technique. First we apply Kirillov’s orbit method to describe these representations for G n . This allows us to write the corresponding hypoelliptic heat kernel using an integral formula over a Euclidean space. As an application, we describe a short-time behavior of the hypoelliptic heat kernel in our case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.