Abstract

Wound-induced adventitious root (AR) formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR) and the initiated AR share histological and developmental characteristics with lateral roots (LRs). In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid, and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in A. thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are distinct from LR induction.

Highlights

  • Plant roots, hidden below the soil surface, are generally overlooked when one thinks about plant growth and development (Smith and De Smet, 2012)

  • MOLECULAR FACTORS INVOLVED IN THE INITIATION OF adventitious root (AR) IN THE HYPOCOTYL VERSUS lateral roots (LRs) FORMATION IN THE primary root (PR) Lateral root organogenesis depends on auxin signaling and dominant mutants of the solitary root SLR/IAA14 signal transduction factor lead to omission of cell divisions in the pericycle and aborted LR formation (Fukaki et al, 2002; Vanneste et al, 2005)

  • In A. thaliana the PR, LR, and AR together form a flexible root system that is capable to adapt to changing environmental conditions

Read more

Summary

Introduction

Hidden below the soil surface, are generally overlooked when one thinks about plant growth and development (Smith and De Smet, 2012). Different hormonal signaling pathways and factors regulating root development. It can be concluded that different plant hormone signaling pathways converge at the control of cell divisions in the meristem and cell elongation in higher root zones, dependent or independent of auxin signaling, and affect PR growth (Ubeda-Tomás et al, 2012).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call