Abstract
We propose a "phase diagram" for particulate systems with purely repulsive contact forces, such as granular media and colloids. We characterize two classes of behavior as a function of the input kinetic energy per degree of freedom T_{0} and packing fraction deviation from jamming onset Δϕ=ϕ-ϕ_{J} using simulations of frictionless disks. Isocoordinated solids (ICS) exist above jamming; they possess an average contact number equal to the isostatic value z_{iso}. ICS display "strict" harmonic response, where the density of vibrational modes from the Fourier transform of the velocity autocorrelation function is a set of sharp peaks at eigenfrequencies ω_{k}{d} of the dynamical matrix. In contrast, hypocoordinated solids (HCS) occur above and below jamming and possess fluctuating networks of interparticle contacts but do not undergo cage-breaking particle rearrangements. The density of vibrational frequencies for the HCS is not a collection of sharp peaks at ω_{k}{d}, but it does possess a common form over a range of Δϕ and T_{0}.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.