Abstract

The effect of dietary phosphorus (P) on fibroblast growth factor 21 (FGF21)/β-klotho axis was investigated in rats that were fed diets with: Normal (NP) or high P (HP) and either normal (NC), high (HC) or low calories (LC). Sampling was performed at 1, 4 and 7 months. Plasma FGF21 concentrations were higher (p < 0.05) in NC and HC than in LC groups. Increasing P intake had differing effects on plasma FGF21 in rats fed NC and HC vs. rats fed LC at the three sampling times. When compared with the NP groups, FGF21 concentrations decreased at the three sampling points in rats fed NC-HP (80 vs. 194, 185 vs. 382, 145 vs. 403 pg/mL) and HC-HP (90 vs. 190, 173 vs. 353, 94 vs. 434 pg/mL). However, FGF21 did not decrease in rats fed LC-HP (34 vs. 20, 332 vs. 164 and 155 vs. 81 pg/mL). In addition, LC groups had a much lower liver FGF21 messenger ribonucleic acid/glyceraldehyde 3-phosphate dehydrogenase (mRNA/GAPDH) ratio (0.51 ± 0.08 and 0.56 ± 0.07) than the NC-NP (0.97 ± 0.14) and HC-NP (0.97 ± 0.22) groups. Increasing P intake reduced liver FGF21 mRNA/GAPDH in rats fed NC and HC to 0.42 ± 0.05 and 0.37 ± 0.04. Liver β-klotho mRNA/GAPDH ratio was lower (p < 0.05) in LC groups (0.66 ± 0.06 and 0.59 ± 0.10) than in NC (1.09 ± 0.17 and 1.03 ± 0.14) and HC (1.19 ± 0.12 and 1.34 ± 0.19) groups. A reduction (p < 0.05) in β-klotho protein/α-tubulin ratio was also observed in LC groups (0.65 ± 0.05 and 0.49 ± 0.08) when compared with NC (1.12 ± 0.11 and 0.91 ± 0.11) and HC (0.93 ± 0.17 and 0.87 ± 0.09) groups. In conclusion β-klotho is potently regulated by caloric restriction but not by increasing P intake while FGF21 is regulated by both caloric restriction and increased P intake. Moreover, increased P intake has a differential effect on FGF21 in calorie repleted and calorie depleted rats.

Highlights

  • A growing body of evidence is being gathered about the relationship between energy metabolism and mineral metabolism

  • Rats fed HC gained more weight than rats fed NC, but the differences were only significant in the Normal P (0.6%) diet (NP) groups

  • The decrease in body weight was more accentuated in rats fed the LC-high P (HP) diet, 44.3 ± 3.2 g, p = 0.001 vs. low calorie-normal phosphorus (LC-NP) (Figure 1b)

Read more

Summary

Introduction

A growing body of evidence is being gathered about the relationship between energy metabolism and mineral metabolism. This association includes links of obesity with osteoporosis [1], calcium intake [2] and hyperparathyroidism [3]. Obesity is related to vitamin D since vitamin D-receptor knockout rodents display a lean phenotype [4] and obese people tend to have low vitamin D levels [5]. An adipokine that is elevated in obese individuals, has been shown to stimulate fibroblast growth factor 23 (FGF23) [6] and parathyroid hormone secretion [7]. Mineral metabolism is interrelated with glucose homeostasis—e.g., magnesium and osteocalcin have protective actions against diabetes and metabolic syndrome [8,9].

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.