Abstract

Mass spectrometry (MS) is an attractive method for extending capillary-size ion chromatography (cHPIC) to create a valuable technique for speciation analysis. For hyphenation, the aqueous effluent of cHPIC has to be transformed into a volatile mixture for MS while preserving analytical concentrations as well as peak shapes during transfer from cHPIC to MS. Finally, the approach should technically be flexible and easy-to-use. A combination of cHPIC and sheath-flow electrospray ionization (ESI)-MS offers to solve all these challenges. cHPIC/sheath-flow-ESI-TOFMS was used in this study for the speciation analysis of various arsenic model compounds. These model compounds were analyzed with different hyphenation setups and configurations of cHPIC/MS and their respective assets and drawbacks were examined and discussed. The parameters (flow rate and composition of sheath liquid) of sheath-flow ESI and their influence on the performance of the spray and the sensitivity of the detector were investigated and compared with those of sheathless ESI. Using an injection valve to couple cHPIC and MS was found to be the best method for hyphenation, since it constitutes a flexible and dead-volume-free approach. The investigation of sheath-flow ESI revealed that the flow rate of the sheath liquid has to resemble the flow rate of the IC effluent to ensure a stable spray and that a composition of 2-propanol/water/ammonia at 50:50:0.2 (v/v/v) suits most applications without unilaterally promoting the sensitivity for either organic or inorganic compounds. The optimized setup and conditions were successfully applied to the analysis of a mixture of important arsenic species and used to determine limits of detection of organic and inorganic arsenic species (3.7 µg L(-1) elemental arsenic). A method for cHPIC/sheath-flow-ESI-MS was developed. The method was shown to be a valuable tool for speciation and trace analysis. It features no dead volume, fast transfer from IC to MS, only minimal peak-widening, high reproducibility, and the ability to fine-tune the ESI spray for higher sensitivity and stability by adjusting the composition of the sheath-liquid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call