Abstract

Point mutations in cardiac myosin, the heart's molecular motor, produce distinct clinical phenotypes: hypertrophic (HCM) and dilated (DCM) cardiomyopathy. Do mutations alter myosin's molecular mechanics in a manner that is predictive of the clinical outcome? We have directly characterized the maximal force-generating capacity (F(max)) of two HCM (R403Q, R453C) and two DCM (S532P, F764L) mutant myosins isolated from homozygous mouse models using a novel load-clamped laser trap assay. F(max) was 50% (R403Q) and 80% (R453C) greater for the HCM mutants compared with the wild type, whereas F(max) was severely depressed for one of the DCM mutants (65% S532P). Although F(max) was normal for the F764L DCM mutant, its actin-activated ATPase activity and actin filament velocity (V(actin)) in a motility assay were significantly reduced (Schmitt JP, Debold EP, Ahmad F, Armstrong A, Frederico A, Conner DA, Mende U, Lohse MJ, Warshaw D, Seidman CE, Seidman JG. Proc Natl Acad Sci USA 103: 14525-14530, 2006.). These F(max) data combined with previous V(actin) measurements suggest that HCM and DCM result from alterations to one or more of myosin's fundamental mechanical properties, with HCM-causing mutations leading to enhanced but DCM-causing mutations leading to depressed function. These mutation-specific changes in mechanical properties must initiate distinct signaling cascades that ultimately lead to the disparate phenotypic responses observed in HCM and DCM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.