Abstract
Hypertonic stress (HS) suppresses neutrophil (PMN) functions. We studied the underlying mechanism and found that HS rapidly (<1 min) increased intracellular cAMP levels by up to sevenfold. cAMP levels correlated with applied hypertonicity and the degree of neutrophil suppression. HS and cAMP-elevating drugs (forskolin and dibutyryl cAMP-acetoxymethyl ester) similarly suppressed extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase activation and superoxide formation in response to N-formylmethionyl-leucyl-phenylalanine (fMLP) stimulation. Inhibition of cAMP-dependent protein kinase A (PKA) with H-89 abrogated the suppressive effects of HS, restoring fMLP-induced ERK and p38 activation and superoxide formation. Inhibition of phosphodiesterase with 3-isobutyl-1-methylxanthine augmented cAMP accumulation and the suppressive effects of HS, while inhibition of adenylyl cyclase with MDL-12330A abolished these effects. These findings suggest that HS-activated cAMP/PKA signaling inhibits superoxide formation by intercepting fMLP-induced activation steps upstream of ERK and p38. In contrast to its effects in the presence of moderate hypertonicity levels (40 mM), H-89 was unable to rescue neutrophil functions from suppression by higher hypertonicity levels (100 mM), indicating that more severe HS suppresses neutrophils via secondary PKA-independent mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.