Abstract

Hyperosmotic stress can be encountered by the kidney and the skin, as well as during treatment of acute brain damage. It can lead to cell cycle arrest or apoptosis. Exactly how mammalian cells detect hyperosmolarity and how the cell chooses between cell cycle arrest or death remains to be established. It has been proposed that hyperosmolarity is detected directly by growth factor receptor protein tyrosine kinases. To investigate this, we tested whether growth factors and osmotic stress cooperate in the activation of signaling pathways. Receptors responded normally to the presence of growth factors, and we observed normal levels of GTP-bound Ras under hyperosmotic conditions. In contrast, activation of Raf, Akt, ERK1, ERK2, and c-Jun NH2-terminal kinase was strongly reduced. These observations suggest that hyperosmotic conditions block signaling directly downstream of active Ras. It is thought that apoptotic cell death due to environmental stress is initiated by cytochrome c release from the mitochondria. Visualization of cytochrome c using immunofluorescence showed that hypertonic conditions result in a breakup of the mitochondrial network, which is reestablished within 1 h after hypertonic medium is replaced with isotonic medium. When we carried out live imaging, we observed that the mitochondrial membrane potential disappeared immediately after the onset of hyperosmotic shock. Our observations provide new insights into the hypertonic stress response pathway. In addition, they show that signaling downstream of Ras and mitochondrial dynamics can easily be manipulated by the exposure of cells to hyperosmotic conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.