Abstract

Physical exercise with increased ventilation leads to a considerable rise in water loss from the airways. The mechanisms underlying the regulation of transepithelial fluid transport necessary to compensate for these losses are unknown but may include changes in luminal ion channel conductance. The present study was designed to examine the effects of an increase in luminal chloride and sodium concentrations which may locally occur during hyperventilation on luminal ion conductance in the respiratory epithelium of healthy controls and patients diagnosed with cystic fibrosis (CF). Changes in luminal chloride and sodium conductance were inferred by recording nasal potential difference in eight healthy subjects and 10 patients with CF, using superfusing solutions based on isotonic saline (150 mM) on one occasion and solutions based on hypertonic saline (300 mM) on the other. Switching from isotonic to hypertonic saline superfusion decreased potential difference in controls and CF patients significantly. Amiloride induced a decrease of potential difference which was larger with isotonic than with hypertonic saline (controls 9.5 +/- 6.1 vs. 3.7 +/- 4.6 mV; CF 17.2 +/- 7.2 vs. 9.8 +/- 7.6 mV). Chloride conductance stimulated with solutions low in chloride and containing isoproterenol was not significantly changed by hypertonic saline solutions compared with isotonic solutions in both groups. The findings indicate a significant inhibition of luminal sodium conductance by high luminal sodium concentrations. This mechanism may be involved in the regulation of fluid transport across the respiratory epithelium during exercise and in the improvement of mucociliary clearance and lung functions with inhalation of hypertonic saline in CF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.