Abstract

Siliciclastic tidal facies have been recognized in Pennsylvanian coal measures of the Eastern Interior (Illinois) and Western Interior (Forest City) basins. In particular, rhythmic tidal laminations or tidal bundles are recorded in shale-rich, heterolithic estuarine and coastal paleofacies, as well as within tidal and fluvio-estuarine channels. The tidal facies are recurring and range from the upper Morrowan (Early Pennsylvanian) through at least the Desmoinesian (late Middle Pennsylvanian). Laminae-thickness series within tidal facies in both basins exhibit a variety of well-developed, tidal cycles that include semidiurnal, diurnal, neap-spring, apogean-perigean, and seasonal to annual periodicities. Study of modern analogs, predominantly from hypertidal settings, provides evidence to suggest the presence of elevated paleotidal ranges in the Pennsylvanian seaways in both basins. The tidal facies are best developed within transgressive systems, particularly within incised valley-fill sequences. During sediment accumulation, the extreme tidal dynamics resulted in widespread deposition of rhythmites. Cyclic rhythmites that contain high-resolution records of daily to yearly periodicities are much more locally restricted. Preservation of tidal rhythmites was likely aided by (1) rapid, high-magnitude changes in global paleosealevel, (2) strongly resonant depositional embayments, (3) formation of large tropical Pangean rivers during lowstand that were converted to estuaries during subsequent periods of glacial melting and the resultant sea-level rise, and (4) a strongly resonant, extensive global paleo-ocean. Preservation of cyclic tidal rhythmites that contain high-resolution records were likely controlled by the generation of local accommodation space via (1) peat compaction, (2) faulting, and (3) tidal and fluvial channel avulsion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.