Abstract

Hyperthyroidism was induced in rats and somatic indices and metabolic parameters were analyzed in testis. In addition, the morphological analysis evidenced testes maturation and intense protein synthesis and processing, supporting the enhancement in vimentin synthesis in hyperthyroid testis. Furthermore, vimentin phosphorylation was increased, indicating an accumulation of phosphorylated vimentin associated to the cytoskeleton, which could be a consequence of the extracellular-regulated kinase (ERK) activation regulating the cytoskeleton. Biomarkers of oxidative stress demonstrated an increased basal metabolic rate measured by tissue oxygen consumption, as well as, increased TBARS levels. In addition, the enzymatic and non-enzymatic antioxidant defences appeared to respond according to the augmented oxygen consumption. We observed decreased total glutathione levels, with enhancement of reduced glutathione, whereas most of the antioxidant enzyme activities were induced. Otherwise, superoxide dismutase activity was inhibited. These results support the idea that an increase in mitochondrial ROS generation, underlying cellular oxidative damage, is a side effect of hyperthyroid-induced biochemical changes by which rat testis increase their metabolic capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.