Abstract

Bacillus licheniformis alpha-amylase (BLA) is a highly thermostable starch-degrading enzyme that has been extensively studied in both academic and industrial laboratories. For over a decade, we have investigated BLA thermal properties and identified amino acid substitutions that significantly increase or decrease the thermostability. This paper describes the cumulative effect of some of the most beneficial point mutations identified in BLA. Remarkably, the Q264S-N265Y double mutation led to a rather limited gain in stability but significantly improved the amylolytic function. The most hyperthermostable variants combined seven amino acid substitutions and inactivated over 100 times more slowly and at temperatures up to 23 degrees C higher than the wild-type enzyme. In addition, two highly destabilizing mutations were introduced in the metal binding site and resulted in a decrease of 25 degrees C in the half-inactivation temperature of the double mutant enzyme compared with wild-type. These mutational effects were analysed by protein modelling based on the recently determined crystal structure of a hyperthermostable BLA variant. Our engineering work on BLA shows that the thermostability of an already naturally highly thermostable enzyme can be substantially improved and modulated over a temperature range of 50 degrees C through a few point mutations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.