Abstract

Magnetic nanoparticles (NPs) studied in hyperthermia investigations have shown promising results in combating tumors and slowing cancerous growth. However, no attention has been paid to hyperthermia properties of nickel ferrite NPs with different compositions. Herein, we synthesize NixFe3−xO4 (0 ≤ x ≤ 1) NPs using a co-precipitation method, followed by the investigation of their structural, magnetic, and hyperthermia properties. According to room-temperature hysteresis loop results, the complete replacement of Fe cations by Ni2+ ions leads to a reduction in the saturation magnetization (Ms) from 55.40 to 19.30 emu/g, and an increase in the coercive field (Hc) from 7.33 to 71.40 Oe. Moreover, first-order reversal curve analysis reveals a reduction in the respective superparamagnetic fraction from 77 to 29% when increasing the Ni concentration (x) from 0 to 1. The results on magnetic hyperthermia properties show that Ni0.6Fe2.4O4 and Ni0.8Fe2.2O4 NPs have highest heating efficiency, giving rise to specific loss power values of 170.5 and 169 W/g in a water medium with a concentration of 3 mg/ml, and 200.5 and 198.4 W/g for a concentration of 1.5 mg/ml, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.