Abstract

Hypertension alters the structure and function of cerebral blood vessels, and is an important risk factor for stroke and cerebral small vessel disease (cSVD). However, the pathophysiological process is not yet well understood. This study aimed to investigate the relationship between the pulsatility measures in small perforating arteries and hypertension, since hypertension-induced arterial stiffening may lead to a higher blood flow pulsatility and lower damping. We examined 28 patients with essential hypertension and 25 age- and sex-matched healthy controls (mean age: 63.4, range: 43-81 years, 26 males). Blood flow velocity waveforms were acquired in the lenticulostriate arteries (LSAs) and the middle cerebral artery using phase-contrast MRI at 7 Tesla. Several cSVD markers were scored. The velocity and pulsatility measures were compared between the hypertensives and controls. A higher pulsatility index (PI) in the LSAs and a lower damping factor (DF) was found in the hypertensive compared to the normotensive group (P=0.015, P=0.015, respectively), but no association was found for the PI in the middle cerebral artery. Higher systolic and mean arterial pressures were associated with higher PI in the LSA and DF. For diastolic blood pressure, only an association with a lower DF was found. Adjusting for cSVD score did not alter these relationships. This study shows a higher PI in the LSAs and a lower DF in subjects with hypertension, independent of cSVD presence. This supports the hypothesis that hypertension-induced arterial remodeling may alter the intracerebral blood flow velocity profiles, which could eventually contribute to cerebral tissue damage. URL: https://trialsearch.who.int/; Unique identifier: NL7537 and NL8798.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.