Abstract

We introduce the hypersymmetric functions of 2 × 2 nonautonomous matrices and show that they are related, by simple expressions, to the Pochhammers (factorial polynomials) of these matrices. The hypersymmetric functions are generalizations of the associated elementary symmetric functions, and for a specific class of 2 × 2 matrices, having a high degree of symmetry, they reduce to these latter functions. This class of matrices includes rotations, Lorentz boosts, and discrete time generators for the harmonic oscillators. The hypersymmetric functions are defined over four sets of independent indeterminates using a triplet of interrelated binary partitions. We work out the algebra of this triplet of partitions and then make use of the results in order to simplify the expressions for the hypersymmetric functions for a special class of matrices. In addition to their obvious applications in matrix theory, in coupled difference equations, and in the theory of symmetric functions, the results obtained here also have useful applications in problems involving successive rotations, successive Lorentz transformations, discrete harmonic oscillators, and linear two‐state systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.