Abstract
The paper considers n-dimensional hypersurfaces with constant scalar curvature of a unit sphere Sn−1(1). The hypersurface Sk(c1)×Sn−k(c2) in a unit sphere Sn+1(1) is characterized, and it is shown that there exist many compact hypersurfaces with constant scalar curvature in a unit sphere Sn+1(1) which are not congruent to each other in it. In particular, it is proved that if M is an n-dimensional (n > 3) complete locally conformally flat hypersurface with constant scalar curvature n(n−1)r in a unit sphere Sn+1(1), then r > 1−2/n, and(1) when r ≠ (n−2)/(n−1), ifthen M is isometric to S1(√1−c2)×Sn−1(c), where S is the squared norm of the second fundamental form of M;(2) there are no complete hypersurfaces in Sn+1(1) with constant scalar curvature n(n−1)r and with two distinct principal curvatures, one of which is simple, such that r = (n−2)/(n−1) and
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.