Abstract

In canonical gravity, covariance is implemented by brackets of hypersurface-deformation generators forming a Lie algebroid. Lie algebroid morphisms therefore allow one to relate different versions of the brackets that correspond to the same space-time structure. An application to examples of modified brackets found mainly in models of loop quantum gravity can in some cases map the space-time structure back to the classical Riemannian form after a field redefinition. For one type of quantum corrections (holonomies), signature change appears to be a generic feature of effective space-time, and is shown here to be a new quantum space-time phenomenon which cannot be mapped to an equivalent classical structure. In low-curvature regimes, our constructions prove the existence of classical space-time structures assumed elsewhere in models of loop quantum cosmology, but also shows the existence of additional quantum corrections that have not always been included.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call