Abstract

Optimization leads to specialized structures which are not robust to disturbance events like unanticipated abnormal loading or human errors. Typical reliability-based and robust optimization mainly address objective aleatory uncertainties. To date, the impact of subjective epistemic uncertainties in optimal design has not been comprehensively investigated. In this paper, we use an independent parameter to investigate the effects of epistemic uncertainties in optimal design: the latent failure probability. Reliability-based and risk-based truss topology optimization are addressed. It is shown that optimal risk-based designs can be divided in three groups: (A) when epistemic uncertainty is small (in comparison to aleatory uncertainty), the optimal design is indifferent to it and yields isostatic structures; (B) when aleatory and epistemic uncertainties are relevant, optimal design is controlled by epistemic uncertainty and yields hyperstatic but nonredundant structures, for which expected costs of direct collapse are controlled; (C) when epistemic uncertainty becomes too large, the optimal design becomes redundant, as a way to control increasing expected costs of collapse. The three regions above are divided by hyperstatic and redundancy thresholds. The redundancy threshold is the point where the structure needs to become redundant so that its reliability becomes larger than the latent reliability of the simplest isostatic system. Simple truss topology optimization is considered herein, but the conclusions have immediate relevance to the optimal design of realistic structures subject to aleatory and epistemic uncertainties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call