Abstract
Today's Machine Learning(ML) systems, especially those running in server farms running workloads such as Deep Neural Networks, which require billions of parameters and many hours to train a model, consume a significant amount of energy. To combat this, researchers have been focusing on new emerging neuromorphic computing models. Two of those models are Hyperdimensional Computing (HDC) and Spiking Neural Networks (SNNs), both with their own benefits. HDC has various desirable properties that other Machine Learning (ML) algorithms lack such as: robustness to noise in the system, simple operations, and high parallelism. SNNs are able to process event based signal data in an efficient manner. In this paper, we create HyperSpike, which utilizes a single, randomly initialized and untrained SNN layer as feature extractor connected to a trained HDC classifier. HDC is used to enable more efficient classification as well as provide robustness to errors. We experimentally show that HyperSpike is on average 31.5× more robust to errors than traditional SNNs. We also implement HyperSpike in hardware, and show that it is 10x faster and 2.6× more energy efficient over traditional SNN networks run on Intel's Loihi [1].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.