Abstract

Hyperspherical partial wave theory has been applied here in a new way in the calculation of the triple differential cross sections for the ionization of hydrogen atoms by electron impact at low energies for various equal-energy-sharing kinematic conditions. The agreement of the cross section results with the recent absolute measurements of R\"oder \textit {et al} [51] and with the latest theoretical results of the ECS and CCC calculations [29] for different kinematic conditions at 17.6 eV is very encouraging. The other calculated results, for relatively higher energies, are also generally satisfactory, particularly for large $\Theta_{ab}$ geometries. In view of the present results, together with the fact that it is capable of describing unequal-energy-sharing kinematics [35], it may be said that the hyperspherical partial wave theory is quite appropriate for the description of ionization events of electron-hydrogen type systems. It is also clear that the present approach in the implementation of the hyperspherical partial wave theory is very appropriate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.