Abstract

Although spectral remote sensing techniques have been used to study many ecological variables and biotic and abiotic stresses to agricultural crops over decades, the potential use of these techniques for greenbug, Schizaphis graminum (Rondani) (Hemiptera: Aphididae) infestations and damage to wheat, Triticum aestivum L., under field conditions is unknown. Hence, this research was conducted to investigate: 1) the applicability and feasibility of using a portable narrow-banded (hyperspectral) remote sensing instrument to identify and discern differences in spectral reflection patterns (spectral signatures) of winter wheat canopies with and without greenbug damage; and 2) the relationship between miscellaneous spectral vegetation indices and greenbug density in wheat canopies growing in two fields and under greenhouse conditions. Both greenbug and reflectance data were collected from 0.25-, 0.37-, and 1-m2 plots in one of the fields, greenhouse, and the other field, respectively. Regardless of the growth conditions, greenbug-damaged wheat canopies had higher reflectance in the visible range and less in the near infrared regions of the spectrum when compared with undamaged canopies. In addition to percentage of reflectance comparison, a large number of spectral vegetation indices drawn from the literature were calculated and correlated with greenbug density. Linear regression analyses revealed high relationships (R2 ranged from 0.62 to 0.85) between greenbug density and spectral vegetation indices. These results indicate that hyperspectral remotely sensed data with an appropriate pixel size have the potential to portray greenbug density and discriminate its damage to wheat with repeated accuracy and precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.