Abstract

We introduce a tomographic approach for three-dimensional imaging of evoked hemodynamic activity, using broadband illumination and diffuse optical tomography (DOT) image reconstruction. Changes in diffuse reflectance in the rat somatosensory cortex due to stimulation of a single whisker were imaged at a frame rate of 5Hz using a hyperspectral image mapping spectrometer. In each frame, images in 38 wavelength bands from 484 to 652nm were acquired simultaneously. For data analysis, we developed a hyperspectral DOT algorithm that used the Rytov approximation to quantify changes in tissue concentration of oxyhemoglobin ([Formula: see text]) and deoxyhemoglobin (ctHb) in three dimensions. Using this algorithm, the maximum changes in [Formula: see text] and ctHb were found to occur at [Formula: see text] and [Formula: see text] beneath the surface of the cortex, respectively. Rytov tomographic reconstructions revealed maximal spatially localized increases and decreases in [Formula: see text] and ctHb of [Formula: see text] and [Formula: see text], respectively, with these maximum changes occurring at [Formula: see text] poststimulus. The localized optical signals from the Rytov approximation were greater than those from modified Beer-Lambert, likely due in part to the inability of planar reflectance to account for partial volume effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.