Abstract

Hyperspectral imaging is useful for detecting internal defects of pickling cucumbers. The technique, however, is not yet suitable for high-speed online implementation due to the challenges in analyzing large-scale hyperspectral images. This research aimed to select the optimal wavebands from the hyperspectral image data, so that they can be deployed in either a hyperspectral or multispectral imaging-based inspection system for the automatic detection of internal defects of pickling cucumbers. Hyperspectral reflectance (400–700 nm) and transmittance (700–1,000 nm) images were acquired, using an in-house developed hyperspectral imaging system running at two conveyor speeds of 85 and 165 mm/s, for 300 “Journey” pickling cucumbers before and after internal damage was induced by mechanical load. Minimum redundancy–maximum relevance (MRMR) was used for optimal wavebands selection, and the loadings of principal component analysis (PCA) were also applied for qualitatively identifying the important wavebands that are related to the specific features. Discriminant analysis with Mahalanobis distance classifier was performed for the two-class (i.e., normal and defective) and three-class (i.e., normal, slightly defective, and severely defective) classifications using the mean spectra and textural features (energy and variance) from the regions of interest in the spectral images at selected waveband ratios. The classification results based on MRMR wavebands selection were generally better than those from PCA-based classifications. The two-band ratio of 887/837 nm from MRMR gave the best overall classification results, with the accuracy of 95.1 and 94.2 % at the conveyor speeds of 85 and 165 mm/s, respectively, for the two-class classification. The highest classification accuracies for the three-class classification based on the optimal two-band ratio of 887/837 nm were 82.8 and 81.3 % at the conveyor speeds of 85 and 165 mm/s, respectively. The mean spectra-based classification achieved better results than the textural feature-based classification, except in the three-class classification for the higher conveyor speed. The overall classification accuracies for all selected waveband ratios at the low conveyor speed were slightly higher than those at the higher conveyor speed, since the low speed resulted in more scan lines, thus higher spatial resolution hyperspectral images. The identified two-band ratio of 887/837 nm in transmittance mode could be applied for fast real-time internal defect detection of pickling cucumbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call