Abstract
Compressed sensing (CS) has attracted a lot of attention in recent years as a promising signal processing technique that exploits a signal's sparsity to reduce its size. It allows for simple compression that does not require a lot of additional computational power, and would allow physical implementation at the sensor using spatial light multiplexers using Texas Instruments (TI) digital micro-mirror device (DMD). The DMD can be used as a random measurement matrix, reflecting the image off the DMD is the equivalent of an inner product between the images individual pixels and the measurement matrix. CS however is asymmetrical, meaning that the signals recovery or reconstruction from the measurements does require a higher level of computation. This makes the prospect of working with the compressed version of the signal in implementations such as detection or classification much more efficient. If an initial analysis shows nothing of interest, the signal need not be reconstructed. Many hyper-spectral image applications are precisely focused on these areas, and would greatly benefit from a compression technique like CS that could help minimize the light sensor down to a single pixel, lowering costs associated with the cameras while reducing the large amounts of data generated by all the bands. The present paper will show an implementation of CS using a single pixel hyper-spectral sensor, and compare the reconstructed images to those obtained through the use of a regular sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.