Abstract

Based on the integration of two conventional optical sensing technologies, imaging and spectroscopy, into unique imaging sensors, a hyperspectral imaging system can provide not only spatial information, like color imaging systems, but also spectral information for each pixel in an image, which makes a hyperspectral image capable of capturing both physical and morphological characteristics such as color, size, shape, and texture, and some intrinsic chemical and molecular information (such as water, fat, and protein) from a food product. This chapter presents the fundamentals and applications of a hyperspectral imaging technique. The basic principles and theoretical aspects of this technique, the processing methods for data analysis, and the main features of instruments are presented and discussed briefly, followed by a general overview of applications in quality determination for numerous food products to illustrate the applicability of this technique in the food industry for sample classification and grading, defect and disease detection, distribution visualization of chemical attributes in chemical images, and evaluations of the overall quality of meat, fruits, vegetables, and other food products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call