Abstract

Post-consumer plasterboard waste sorting is carried out manually by operators, which is time-consuming and costly. In this work, a laboratory-scale hyperspectral imaging (HSI) system was evaluated for automatic refurbishment plasterboard waste sorting. The HSI system was trained to differentiate between plasterboard (gypsum core between two lining papers) and contaminants (e.g., wood, plastics, mortar or ceramics). Segregated plasterboard samples were crushed and sieved to obtain gypsum particles of less than 250 microns, which were characterized through X-ray fluorescence to determine their chemical purity levels. Refurbishment plasterboard waste particles <10 mm in size were not processed with the HSI-based sorting system because the manual processing of these particles at a laboratory scale would have been very time-consuming. Gypsum from refurbishment plasterboard waste particles <10 mm in size contained very small amounts of undesirable chemical impurities for plasterboard manufacturing (chloride, magnesium, sodium, potassium and phosphorus salts), and its chemical purity was similar to that of the gypsum from HSI-sorted plasterboard (96 wt%). The combination of unprocessed refurbishment plasterboard waste <10 mm with HSI-sorted plasterboard ≥10 mm in size led to a plasterboard recovery yield >98 wt%. These findings underpin the potential implementation of an industrial-scale HSI system for plasterboard waste sorting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call