Abstract

We present the results of far field measurements of the complete 3D dispersion relation of a surface plasmon resonance (SPR) effect induced by an integrated quantum well nanodevice. The light modulations in the far field, where the surface plasmons are extracted by a grating, has been calculated for a continuum of energies and wavevectors injected by the luminescent substrate. We introduce a novel experimental method for direct mapping of the EM wave dispersion that enables the monitoring of massive amounts of light-scattering related information. The quasi-real time method is applied for tracking, in the E(k) space, the SPR peak surfaces generated by the investigated nanodevice. Those additional dimensions, measured with scalable tracking precision, reveal anisotropic surficial interactions and provide spectroscopic response for SPR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.