Abstract

The resect-and-discard strategy for colorectal polyps based on accurate optical diagnosis remains challenges. Our aim was to investigate the feasibility of hyperspectral imaging (HSI) for identifying colorectal polyp properties and diagnosis of colorectal cancer in fresh tissues during colonoscopy. 144,900 two dimensional images generated from 161 hyperspectral images of colorectal polyp tissues were prospectively obtained from patients undergoing colonoscopy. A residual neural network model was trained with transfer learning to automatically differentiate colorectal polyps, validated by histopathologic diagnosis. The diagnostic performances of the HSI-AI model and endoscopists were calculated respectively, and the auxiliary efficiency of the model was evaluated after a 2-week interval. Quantitative HSI revealed histological differences in colorectal polyps. The HSI-AI model showed considerable efficacy in differentiating nonneoplastic polyps, non-advanced adenomas, and advanced neoplasia invitro, with sensitivities of 96.0%, 94.0%, and 99.0% and specificities of 99.0%, 99.0%, and 96.5%, respectively. With the assistance of the model, the median negative predictive value of neoplastic polyps increased from 50.0% to 88.2% (p = 0.013) in novices. This study demonstrated the feasibility of using HSI as a diagnostic tool to differentiate neoplastic colorectal polyps invitro and the potential of AI-assisted diagnosis synchronized with colonoscopy. The tool may improve the diagnostic performance of novices and facilitate the application of resect-and-discard strategy to decrease the cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.