Abstract
We propose and experimentally demonstrate a hyperspectral imaging-based optical structure for verifying a credit card. Our key idea comes from the fact that the fine detail of the embossed hologram stamped on the credit card is hard to duplicate, and therefore its key color features can be used for distinguishing between the real and counterfeit ones. As the embossed hologram is a diffractive optical element, we shine a number of broadband light sources one at a time, each at a different incident angle, on the embossed hologram of the credit card in such a way that different color spectra per incident angle beam are diffracted and separated in space. In this way, the center of mass of the histogram on each color plane is investigated by using a feed-forward backpropagation neural-network configuration. Our experimental demonstration using two off-the-shelf broadband white light emitting diodes, one digital camera, and a three-layer neural network can effectively identify 38 genuine and 109 counterfeit credit cards with false rejection rates of 5.26% and 0.92%, respectively. Key features include low cost, simplicity, no moving parts, no need of an additional decoding key, and adaptive learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.