Abstract
Hyperspectral remote sensing image unsupervised classification, which assigns each pixel of the image into a certain land-cover class without any training samples, plays an important role in the hyperspectral image processing but still leaves huge challenges due to the complicated and high-dimensional data observation. Although many advanced hyperspectral remote sensing image classification techniques based on supervised and semi-supervised learning had been proposed and confirmed effective in recent years, they require a certain number of high quality training samples to learn a classifier, and thus can’t work in the unsupervised manner. In this work, we propose a hyperspectral image unsupervised classification framework based on robust manifold matrix factorization and its out-of-sample extension. In order to address the high feature dimensionality of the hyperspectral image, we propose a unified low-rank matrix factorization to jointly perform the dimensionality reduction and data clustering, by which the clustering result can be exactly reproduced, which is significantly superior to the existing data clustering algorithms such as the k-means and spectral clustering. In particular, in the proposed matrix factorization, the ℓ2,1-norm is used to measure the reconstruction loss, which helps to reduce the errors brought by the possible noisy observation. The widely considered manifold regularization is also adopted to further promote the proposed model. Furthermore, we have designed a novel Augmented Lagrangian Method (ALM) based procedure to seek the local optimal solution of the proposed optimization and suggested an additional out-of-sample extension trick to make the method can deal with the large-scale hyperspectral remote sensing images. Several experimental results on the standard hyperspectral images show that the proposed method presents competitive clustering accuracy and comparative running time compared to the existing data clustering algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.