Abstract

Recently, combining a low spatial resolution hyperspectral image (LR-HSI) with a high spatial resolution multispectral image (HR-MSI) into an HR-HSI has become a popular scheme to enhance the spatial resolution of HSI. We propose a novel subspace-based low tensor multi-rank regularization method for the fusion, which fully exploits the spectral correlations and non-local similarities in the HR-HSI. To make use of high spectral correlations, the HR-HSI is approximated by spectral subspace and coefficients. We first learn the spectral subspace from the LR-HSI via singular value decomposition, and then estimate the coefficients via the low tensor multi-rank prior. More specifically, based on the learned cluster structure in the HR-MSI, the patches in coefficients are grouped. We collect the coefficients in the same cluster into a three-dimensional tensor and impose the low tensor multi-rank prior on these collected tensors, which fully model the non-local self-similarities in the HR-HSI. The coefficients optimization is solved by the alternating direction method of multipliers. Experiments on two public HSI datasets demonstrate the advantages of tour method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call