Abstract
Hyperspectral images with tens to hundreds of spectral bands usually suffer from low spatial resolution due to the limitation of the amount of incident energy. Without auxiliary images, the single hyperspectral image super-resolution (SR) method is still a challenging problem because of the high-dimensionality characteristic and special spectral patterns of hyperspectral images. Failing to thoroughly explore the coherence among hyperspectral bands and preserve the spatial–spectral structure of the scene, the performance of existing methods is still limited. In this article, we propose a novel single hyperspectral image SR method termed RFSR, which models the spectrum correlations from a sequence perspective. Specifically, we introduce a recurrent feedback network to fully exploit the complementary and consecutive information among the spectra of the hyperspectral data. With the group strategy, each grouping band is first super-resolved by exploring the consecutive information among groups via feedback embedding. For better preservation of the spatial–spectral structure among hyperspectral data, a regularization network is subsequently appended to enforce spatial–spectral correlations over the intermediate estimation. Experimental results on both natural and remote sensing hyperspectral images demonstrate the advantage of our approach over the state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.