Abstract
Existing hyperspectral image (HSI) super-resolution methods fusing a high-resolution RGB image (HR-RGB) and a low-resolution HSI (LR-HSI) always rely on spatial degradation and handcrafted priors, which hinders their practicality. To address these problems, we propose a novel, to the best of our knowledge, method with two transfer models: a window-based linear mixing (W-LM) model and a feature transfer model. Specifically, W-LM initializes a high-resolution HSI (HR-HSI) by transferring the spectra from the LR-HSI to the HR-RGB. By using the proposed feature transfer model, the HR-RGB multi-level features extracted by a pre-trained convolutional neural network (CNN) are then transferred to the initialized HR-HSI. The proposed method fully exploits spectra of LR-HSI and multi-level features of HR-RGB and achieves super-resolution without requiring the spatial degradation model and any handcrafted priors. The experimental results for 32 × super-resolution on two public datasets and our real image set demonstrate the proposed method outperforms eight state-of-the-art existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.