Abstract

The Binary Partition Tree (BPT) is a hierarchical region-based representation of an image in a tree structure. BPT allows users to explore the image at different segmentation scales, from fine partitions close to the leaves to coarser partitions close to the root. Often, the tree is pruned so the leaves of the resulting pruned tree conform an optimal partition given some optimality criterion. Here, we propose a novel BPT construction approach and pruning strategy for hyperspectral images based on spectral unmixing concepts. The proposed methodology exploits the local unmixing of the regions to find the partition achieving a global minimum reconstruction error. We successfully tested the proposed approach on the well-known Cuprite hyperspectral image collected by NASA Jet Propulsion Laboratory's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This scene is considered as a standard benchmark to validate spectral unmixing algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.