Abstract

Hyperspectral image (HSI) mixed noise removal is a fundamental problem and an important preprocessing step in remote sensing fields. The low-rank approximation-based methods have been verified effective to encode the global spectral correlation for HSI denoising. However, due to the large scale and complexity of real HSI, previous low-rank HSI denoising techniques encounter several problems, including coarse rank approximation (such as nuclear norm), the high computational cost of singular value decomposition (SVD) (such as Schatten <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula> -norm), and adaptive rank selection (such as low-rank factorization). In this article, two novel factor group sparsity-regularized nonconvex low-rank approximation (FGSLR) methods are introduced for HSI denoising, which can simultaneously overcome the mentioned issues of previous works. The FGSLR methods capture the spectral correlation via low-rank factorization, meanwhile utilizing factor group sparsity regularization to further enhance the low-rank property. It is SVD-free and robust to rank selection. Moreover, FGSLR is equivalent to Schatten <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula> -norm approximation ( <xref ref-type="theorem" rid="theorem1" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Theorem 1</xref> ), and thus FGSLR is tighter than the nuclear norm in terms of rank approximation. To preserve the spatial information of HSI in the denoising process, the total variation regularization is also incorporated into the proposed FGSLR models. Specifically, the proximal alternating minimization is designed to solve the proposed FGSLR models. Experimental results have demonstrated that the proposed FGSLR methods significantly outperform existing low-rank approximation-based HSI denoising methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.