Abstract
During the acquisition of a hyperspectral image (HSI), it is easily corrupted by many kinds of noises, which limits the subsequent applications. For decades, numerous HSI denoising methods have been proposed. However, these methods rarely consider the stripe noise as an independent component, thus cannot effectively remove the stripe noise. In this paper, we propose a mixed noise removal algorithm to destripe an HSI by taking advantage of the low-rank property of stripe noise. In the meantime, sparse representation and graph Laplacian regularization are utilized to remove Gaussian and sparse noise. Roughly speaking, the sparse representation helps achieve the approximation of the original image. A graph Laplacian regularization term can ensure the non-local spatial similarity of an HSI. Separate constraints on the sparse coefficient matrix and stripe noise components can help remove different types of noises. Experimental results on both simulated and real data demonstrate the effectiveness of the proposed method for HSI restoration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.