Abstract

A training-sequence-based entropy-constrained predictive trellis coded quantization (ECPTCQ) scheme is presented for encoding autoregressive sources. For encoding a first-order Gauss-Markov source, the mean squared error (MSE) performance of an eight-state ECPTCQ system exceeds that of entropy-constrained differential pulse code modulation (ECDPCM) by up to 1.0 dB. In addition, a hyperspectral image compression system is developed, which utilizes ECPTCQ. A hyperspectral image sequence compressed at 0.125 b/pixel/band retains an average peak signal-to-noise ratio (PSNR) of greater than 43 dB over the spectral bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.